# Create new_df
new_df <- structure(list(id = c("R_88j7lG37gLfxk22", "R_88j7lG37gLfxk22",
"R_88j7lG37gLfxk22", "R_88j7lG37gLfxk22", "R_88j7lG37gLfxk22",
"R_88j7lG37gLfxk22"), choice = c(0, 1, 0, 0, 0, 1), low_env = c(NA,
NA, NA, NA, NA, NA), mid_env = c(NA, NA, NA, NA, NA, NA), high_env = c(NA,
NA, NA, NA, NA, NA), low_eth = c(NA, NA, NA, NA, NA, NA), mid_eth = c(NA,
NA, NA, NA, NA, NA), high_eth = c(NA, NA, NA, NA, NA, NA), `low_pri($25)` = c(NA,
NA, NA, NA, NA, NA), `mid_pri($75)` = c(NA, NA, NA, NA, NA, NA
), `high_pri($125)` = c(NA, NA, NA, NA, NA, NA)), row.names = c(NA,
6L), class = "data.frame")
# Create long1
long1 <- structure(list(id = "R_88j7lG37gLfxk22", t1_choice = "2", t2_choice = "1",
t3_choice = "1", t4_choice = "2", t1_p1_env = "high_env",
t1_p1_eth = "low_eth", t1_p1_pri = "$125", t1_p2_env = "mid_env",
t1_p2_eth = "high_eth", t1_p2_pri = "$25", t1_p3_env = "low_env",
t1_p3_eth = "mid_eth", t1_p3_pri = "$75", t2_p1_env = "high_env",
t2_p1_eth = "low_eth", t2_p1_pri = "$75", t2_p2_env = "mid_env",
t2_p2_eth = "mid_eth", t2_p2_pri = "$125", t2_p3_env = "mid_env",
t2_p3_eth = "mid_eth", t2_p3_pri = "$75", t3_p1_env = "high_env",
t3_p1_eth = "high_eth", t3_p1_pri = "$125", t3_p2_env = "mid_env",
t3_p2_eth = "low_eth", t3_p2_pri = "$25", t3_p3_env = "low_env",
t3_p3_eth = "high_eth", t3_p3_pri = "$25", t4_p1_env = "low_env",
t4_p1_eth = "low_eth", t4_p1_pri = "$75", t4_p2_env = "high_env",
t4_p2_eth = "mid_eth", t4_p2_pri = "$125", t4_p3_env = "low_env",
t4_p3_eth = "high_eth", t4_p3_pri = "$25"), row.names = c(NA,
-1L), class = c("tbl_df", "tbl", "data.frame"))
# Loop through the first three rows of new_df
for (i in 1:3) {
# Extracting the required values from long1 for each row
env <- long1[paste0("t1_p", i, "_env")][1]
eth <- long1[paste0("t1_p", i, "_eth")][1]
pri <- long1[paste0("t1_p", i, "_pri")][1]
# Matching values from long1 to new_df columns in the corresponding row
new_df[i, "low_env"] <- as.numeric(env == "low_env")
new_df[i, "mid_env"] <- as.numeric(env == "mid_env")
new_df[i, "high_env"] <- as.numeric(env == "high_env")
new_df[i, "low_eth"] <- as.numeric(eth == "low_eth")
new_df[i, "mid_eth"] <- as.numeric(eth == "mid_eth")
new_df[i, "high_eth"] <- as.numeric(eth == "high_eth")
new_df[i, "low_pri($25)"] <- as.numeric(pri == "$25")
new_df[i, "mid_pri($75)"] <- as.numeric(pri == "$75")
new_df[i, "high_pri($125)"] <- as.numeric(pri == "$125")
}
# Loop through the second three rows of new_df
for (i in 1:3) {
# Extracting the required values from long1 for each row
env <- long1[paste0("t2_p", i, "_env")][1]
eth <- long1[paste0("t2_p", i, "_eth")][1]
pri <- long1[paste0("t2_p", i, "_pri")][1]
# Matching values from long1 to new_df columns in the corresponding row
new_df[i + 3, "low_env"] <- as.numeric(env == "low_env")
new_df[i + 3, "mid_env"] <- as.numeric(env == "mid_env")
new_df[i + 3, "high_env"] <- as.numeric(env == "high_env")
new_df[i + 3, "low_eth"] <- as.numeric(eth == "low_eth")
new_df[i + 3, "mid_eth"] <- as.numeric(eth == "mid_eth")
new_df[i + 3, "high_eth"] <- as.numeric(eth == "high_eth")
new_df[i + 3, "low_pri($25)"] <- as.numeric(pri == "$25")
new_df[i + 3, "mid_pri($75)"] <- as.numeric(pri == "$75")
new_df[i + 3, "high_pri($125)"] <- as.numeric(pri == "$125")
# Adjusting the choice column
new_df[i + 3, "choice"] <- as.numeric(long1[paste0("t2_choice")][1] == i)
}
new_df
id choice low_env mid_env high_env low_eth mid_eth high_eth low_pri($25) mid_pri($75)
1 R_88j7lG37gLfxk22 0 0 0 1 1 0 0 0 0
2 R_88j7lG37gLfxk22 1 0 1 0 0 0 1 1 0
3 R_88j7lG37gLfxk22 0 1 0 0 0 1 0 0 1
4 R_88j7lG37gLfxk22 1 0 0 1 1 0 0 0 1
5 R_88j7lG37gLfxk22 0 0 1 0 0 1 0 0 0
6 R_88j7lG37gLfxk22 0 0 1 0 0 1 0 0 1
high_pri($125)
1 1
2 0
3 0
4 0
5 1
6 0