均值和方差计算需要分组进行,但t检验和p值计算可以矢量化。
my.t.test.2 <- function(grp, x, y) {
grp <- factor(grp)
x_g <- split(x, grp)
x_n <- lengths(x_g)
x_mean <- vapply(x_g, mean, numeric(1))
x_var <- vapply(x_g, var, numeric(1))
y_g <- split(y, grp)
y_n <- lengths(y_g)
y_mean <- vapply(y_g, mean, numeric(1))
y_var <- vapply(y_g, var, numeric(1))
x_se2 <- x_var / x_n
y_se2 <- y_var / y_n
se <- sqrt(x_se2 + y_se2)
tstat <- (x_mean - y_mean) / se
df <- se^4 / (x_se2^2 / (x_n - 1L) + (y_se2^2) / (y_n - 1L))
2 * pt(-abs(tstat), df)
}
一个人可以试着通过避免发送来变得超级聪明(这就是为什么
mean()
my.t.test.2.1 <- compiler::cmpfun(function(grp, x, y) {
grp <- factor(grp)
x_g <- split.default(x, grp)
n <- lengths(x_g)
n1 <- n - 1L
x_mean <- vapply(x_g, mean.default, numeric(1), USE.NAMES = FALSE)
x_var <- vapply(x_g, var, numeric(1), USE.NAMES = FALSE)
y_g <- split.default(y, grp)
y_mean <- vapply(y_g, mean.default, numeric(1), USE.NAMES = FALSE)
y_var <- vapply(y_g, var, numeric(1), USE.NAMES = FALSE)
x_se2 <- x_var / n
y_se2 <- y_var / n
se <- sqrt(x_se2 + y_se2)
tstat <- (x_mean - y_mean) / se
df <- se^4 / ((x_se2^2 + y_se2^2) / n1)
2 * pt(-abs(tstat), df)
})
规范解决方案和其他解决方案可以打包以提供相同的输出
f0 <- function(df)
df %>% group_by(id) %>% summarize(p.value = t.test(A, B)$p.value)
f1 <- function(df)
df %>% group_by(id) %>% summarize(p.value = my.t.test(A, B))
f2 <- function(df)
tibble(id = unique(df$id), p.value = my.t.test.2(df$id, df$A, df$B))
f2.1 <- function(df)
tibble(id = unique(df$id), p.value = my.t.test.2.1(df$id, df$A, df$B))
f2.1()
产生与规范实现相同的结果,速度大约是规范实现的两倍;担心
平均值()
等(
f2()
与。
二层一()
> all.equal.default(f0(df1), f2.1(df1))
[1] TRUE
> microbenchmark(f0(df1), f1(df1), f2(df1), f2.1(df1), times = 5)
Unit: milliseconds
expr min lq mean median uq max neval
f0(df1) 374.2819 379.7749 380.8365 380.0094 381.2368 388.8794 5
f1(df1) 249.6502 250.2525 251.8813 252.1965 253.3444 253.9630 5
f2(df1) 154.1152 158.3243 159.8277 159.1076 162.7602 164.8311 5
f2.1(df1) 151.0032 151.0149 152.3900 152.8105 153.2840 153.8373 5
对我来说C++实现
my.t.test.cpp <- function (x, y = NULL) {
nx <- length(x)
mx <- sum_cpp(x) / nx
vx <- var_cpp(x, mx)
ny <- length(y)
my <- sum_cpp(y) / ny
vy <- var_cpp(y, my)
stderrx <- sqrt(vx/nx)
stderry <- sqrt(vy/ny)
stderr <- sqrt(stderrx^2 + stderry^2)
df <- stderr^4/(stderrx^4/(nx - 1) + stderry^4/(ny - 1))
tstat <- (mx - my - 0)/stderr
pval <- 2 * pt(-abs(tstat), df)
return(pval)
}
fcpp <- function(df)
df %>% group_by(id) %>% summarize(p.value = my.t.test.cpp(A, B))
分析2.1解决方案表明,大部分时间都花在
var()
,如果有人打电话给
stopifnot()
> var
function (x, y = NULL, na.rm = FALSE, use)
{
...
na.method <- pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
"everything", "na.or.complete"))
...
if (is.data.frame(x))
x <- as.matrix(x)
else stopifnot(is.atomic(x))
...
.Call(C_cov, x, y, na.method, FALSE)
}
<bytecode: 0x5e1a440>
<environment: namespace:stats>
> Rprof(); x <- my.t.test.2.1(df1$id, df1$A, df1$B); Rprof(NULL); summaryRprof()
$by.self
self.time self.pct total.time total.pct
"withCallingHandlers" 0.04 28.57 0.08 57.14
"tryCatchList" 0.04 28.57 0.04 28.57
"vapply" 0.02 14.29 0.14 100.00
"stopifnot" 0.02 14.29 0.12 85.71
"match.call" 0.02 14.29 0.02 14.29
$by.total
total.time total.pct self.time self.pct
"vapply" 0.14 100.00 0.02 14.29
"my.t.test.2.1" 0.14 100.00 0.00 0.00
"stopifnot" 0.12 85.71 0.02 14.29
"FUN" 0.12 85.71 0.00 0.00
"withCallingHandlers" 0.08 57.14 0.04 28.57
"tryCatchList" 0.04 28.57 0.04 28.57
"tryCatch" 0.04 28.57 0.00 0.00
"match.call" 0.02 14.29 0.02 14.29
$sample.interval
[1] 0.02
$sampling.time
[1] 0.14
因此在追求速度时,可以避免参数检查,直接调用C函数
my.t.test.2.2 <- compiler::cmpfun(function(grp, x, y) {
var <- function(x)
.Call(stats:::C_cov, x, NULL, 4L, FALSE)
grp <- factor(grp)
x_g <- split.default(x, grp)
n <- lengths(x_g)
n1 <- n - 1L
x_mean <- vapply(x_g, mean.default, numeric(1), USE.NAMES = FALSE)
x_var <- vapply(x_g, var, numeric(1), USE.NAMES = FALSE)
y_g <- split.default(y, grp)
y_mean <- vapply(y_g, mean.default, numeric(1), USE.NAMES = FALSE)
y_var <- vapply(y_g, var, numeric(1), USE.NAMES = FALSE)
x_se2 <- x_var / n
y_se2 <- y_var / n
se <- sqrt(x_se2 + y_se2)
tstat <- (x_mean - y_mean) / se
df <- se^4 / ((x_se2^2 + y_se2^2) / n1)
2 * pt(-abs(tstat), df)
})
f2.2 <- function(df)
tibble(id = unique(df$id), p.value = my.t.test.2.2(df$id, df$A, df$B))
结果证明这是很有表现力的。
> all.equal.default(f0(df1), f2.2(df1))
[1] TRUE
> microbenchmark(
+ f0(df1), f1(df1), f2(df1), f2.1(df1), f2.2(df1), fcpp(df1),
+ times = 5
+ )
Unit: milliseconds
expr min lq mean median uq max neval
f0(df1) 378.61985 379.25525 393.38371 379.56797 386.2806 443.19488 5
f1(df1) 250.99802 252.45281 253.55140 253.34249 255.2801 255.68362 5
f2(df1) 156.76073 158.63126 159.63693 160.33446 161.2260 161.23216 5
f2.1(df1) 146.64555 148.28773 151.17250 151.38536 153.9363 155.60751 5
f2.2(df1) 25.24441 25.62982 27.50898 26.11755 30.0836 30.46951 5
fcpp(df1) 104.20851 104.50396 105.19383 104.62905 104.7876 107.84006 5
my.t.test.2.2.cpp <- compiler::cmpfun(function(grp, x, y) {
grp <- factor(grp)
x_g <- split.default(x, grp)
n <- lengths(x_g)
n1 <- n - 1L
x_mean <- vapply(x_g, mean.default, numeric(1), USE.NAMES = FALSE)
x_var <- unlist(Map(var_cpp, x_g, x_mean))
y_g <- split.default(y, grp)
y_mean <- vapply(y_g, mean.default, numeric(1), USE.NAMES = FALSE)
y_var <- unlist(Map(var_cpp, y_g, y_mean))
x_se2 <- x_var / n
y_se2 <- y_var / n
se <- sqrt(x_se2 + y_se2)
tstat <- (x_mean - y_mean) / se
df <- se^4 / ((x_se2^2 + y_se2^2) / n1)
2 * pt(-abs(tstat), df)
})
f2.2.cpp <- function(df)
tibble(id = unique(df$id), p.value = my.t.test.2.2.cpp(df$id, df$A, df$B))
可比性能
> microbenchmark(f2.2(df1), f2.2.cpp(df1), times = 20)
Unit: milliseconds
expr min lq mean median uq max neval
f2.2(df1) 25.11237 25.69622 30.27956 26.35570 29.81884 87.34955 20
f2.2.cpp(df1) 24.88787 25.25171 26.80836 25.43498 29.06338 30.80012 20
我不确定哪一个是黑客攻击——编写你自己的C++代码来改变,或者直接调用R的C代码。
一个更快的C++解决方案在一个调用中计算组均值和方差
cppFunction('List doit(IntegerVector group, NumericVector x) {
int n_grp = 0;
for (int i = 0; i < group.size(); ++i)
n_grp = group[i] > n_grp ? group[i] : n_grp;
std::vector<int> n(n_grp);
std::vector<double> sum(n_grp), sumsq(n_grp);
for (int i = 0; i < group.size(); ++i) {
n[ group[i] - 1 ] += 1;
sum[ group[i] - 1 ] += x[i];
sumsq[ group[i] - 1 ] += x[i] * x[i];
}
NumericVector mean(n_grp), var(n_grp);
for (size_t i = 0; i < n.size(); ++i) {
mean[i] = sum[i] / n[i];
var[i] = (sumsq[i] - sum[i] * mean[i]) / (n[i] - 1);
}
return List::create(_["n"]=n[0], _["mean"]=mean, _["var"]=var);
}')
my.t.test.2.3.cpp <- compiler::cmpfun(function(grp, x, y) {
x <- doit(grp, x)
y <- doit(grp, y)
x_se2 <- x$var / x$n
y_se2 <- y$var / y$n
se <- sqrt(x_se2 + y_se2)
tstat <- (x$mean - y$mean) / se
df <- se^4 / ((x_se2^2 + y_se2^2) / (x$n - 1L))
2 * pt(-abs(tstat), df)
})
f2.3.cpp <- function(df)
tibble(
id = unique(df$id),
p.value = my.t.test.2.3.cpp(df$id, df$A, df$B)
)
而且这很快
> all.equal.default(f0(df1), f2.3.cpp(df1))
[1] TRUE
> microbenchmark(f2.2(df1), f2.2.cpp(df1), f2.3.cpp(df1), times = 50)
Unit: milliseconds
expr min lq mean median uq max
f2.2(df1) 24.743364 25.445833 28.032135 25.873117 29.191020 88.642771
f2.2.cpp(df1) 24.122380 24.867212 26.012985 25.369963 25.897866 30.783544
f2.3.cpp(df1) 2.831635 2.946094 3.101408 2.992049 3.073788 7.191572
neval
50
50
50
>
另一种选择是生物导体封装
genefilter
::rowttests()
,这需要一个矩阵
set.seed(1)
m1 <- cbind(
matrix(rnorm(8000, mean = 26, sd = 5), ncol=8, byrow = TRUE),
matrix(rnorm(8000, mean = 25, sd = 7), ncol=8, byrow = TRUE)
)
f4 <- function(m1)
genefilter::rowttests(m1, factor(rep(1:2, each=8)))
而且速度也很快
> microbenchmark(f2.3.cpp(df1), f4(m1), times=50)
Unit: milliseconds
expr min lq mean median uq max neval
f2.3.cpp(df1) 2.760877 2.796542 2.877030 2.845795 2.895441 3.286143 50
f4(m1) 1.335288 1.359007 1.397601 1.377544 1.412606 1.693340 50