使用
mul
具有
axis = 0
index
价值依据
get_level_values
df.mul(df.index.get_level_values(1),axis=0)
Out[167]:
X Y Z
A 10 10 0 10
B 50 0 0 0
C 80 80 80 80
dfs = np.split(df, [2], axis=0)
pd.concat([x.mul(x.index.get_level_values(1), axis=0) for x in dfs])
Out[174]:
X Y Z
A 10 10 0 10
B 50 0 0 0
C 80 80 80 80
我也会推荐
numpy
广播
df.values*df.index.get_level_values(1)[:,None]
Out[177]: Int64Index([[10, 0, 10], [0, 0, 0], [80, 80, 80]], dtype='int64')
pd.DataFrame(df.values*df.index.get_level_values(1)[:,None],index=df.index,columns=df.columns)
Out[181]:
X Y Z
A 10 10 0 10
B 50 0 0 0
C 80 80 80 80