代码之家  ›  专栏  ›  技术社区  ›  Abhinav Gupta

需要帮助在python中安装adspy模块

  •  2
  • Abhinav Gupta  · 技术社区  · 7 年前

    我正在尝试以下操作,每次都会出现相同的错误:

    pip install adspy
    
    pip install adspy-0.2.0.tar.gz
    

    错误:

    Collecting adspy
    Using cached adspy-0.2.0.tar.gz
    Complete output from command python setup.py egg_info:
    Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "C:\Users\Abhinav\AppData\Local\Temp\pip-build-4we07kw9\adspy\setup.p
    y", line 5, in <module>
        long_description = open(README).read() + 'nn'
    FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\Abhinav\
    \AppData\\Local\\Temp\\pip-build-4we07kw9\\adspy\\README.md'
    

    1 回复  |  直到 7 年前
        1
  •  2
  •   Anice Jahanjoo    4 年前

    创造 adspy_shared_utilities.py 文件并将下面的代码粘贴到项目中

    import numpy
    import pandas as pd
    import seaborn as sn
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    from matplotlib.colors import ListedColormap, BoundaryNorm
    from sklearn import neighbors
    import matplotlib.patches as mpatches
    import graphviz
    from sklearn.tree import export_graphviz
    import matplotlib.patches as mpatches
    
    def load_crime_dataset():
        # Communities and Crime dataset for regression
        # https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
    
        crime = pd.read_table('readonly/CommViolPredUnnormalizedData.txt', sep=',', na_values='?')
        # remove features with poor coverage or lower relevance, and keep ViolentCrimesPerPop target column
        columns_to_keep = [5, 6] + list(range(11,26)) + list(range(32, 103)) + [145]  
        crime = crime.ix[:,columns_to_keep].dropna()
    
        X_crime = crime.ix[:,range(0,88)]
        y_crime = crime['ViolentCrimesPerPop']
    
        return (X_crime, y_crime)
    
    def plot_decision_tree(clf, feature_names, class_names):
        # This function requires the pydotplus module and assumes it's been installed.
        # In some cases (typically under Windows) even after running conda install, there is a problem where the
        # pydotplus module is not found when running from within the notebook environment.  The following code
        # may help to guarantee the module is installed in the current notebook environment directory.
        #
        # import sys; sys.executable
        # !{sys.executable} -m pip install pydotplus
    
        export_graphviz(clf, out_file="adspy_temp.dot", feature_names=feature_names, class_names=class_names, filled = True, impurity = False)
        with open("adspy_temp.dot") as f:
            dot_graph = f.read()
        # Alternate method using pydotplus, if installed.
        # graph = pydotplus.graphviz.graph_from_dot_data(dot_graph)
        # return graph.create_png()
        return graphviz.Source(dot_graph)
    
    def plot_feature_importances(clf, feature_names):
        c_features = len(feature_names)
        plt.barh(range(c_features), clf.feature_importances_)
        plt.xlabel("Feature importance")
        plt.ylabel("Feature name")
        plt.yticks(numpy.arange(c_features), feature_names)
    
    def plot_labelled_scatter(X, y, class_labels):
        num_labels = len(class_labels)
    
        x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
        y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    
        marker_array = ['o', '^', '*']
        color_array = ['#FFFF00', '#00AAFF', '#000000', '#FF00AA']
        cmap_bold = ListedColormap(color_array)
        bnorm = BoundaryNorm(numpy.arange(0, num_labels + 1, 1), ncolors=num_labels)
        plt.figure()
    
        plt.scatter(X[:, 0], X[:, 1], s=65, c=y, cmap=cmap_bold, norm = bnorm, alpha = 0.40, edgecolor='black', lw = 1)
    
        plt.xlim(x_min, x_max)
        plt.ylim(y_min, y_max)
    
        h = []
        for c in range(0, num_labels):
            h.append(mpatches.Patch(color=color_array[c], label=class_labels[c]))
        plt.legend(handles=h)
    
        plt.show()
    
    
    def plot_class_regions_for_classifier_subplot(clf, X, y, X_test, y_test, title, subplot, target_names = None, plot_decision_regions = True):
    
        numClasses = numpy.amax(y) + 1
        color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
        color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
        cmap_light = ListedColormap(color_list_light[0:numClasses])
        cmap_bold  = ListedColormap(color_list_bold[0:numClasses])
    
        h = 0.03
        k = 0.5
        x_plot_adjust = 0.1
        y_plot_adjust = 0.1
        plot_symbol_size = 50
    
        x_min = X[:, 0].min()
        x_max = X[:, 0].max()
        y_min = X[:, 1].min()
        y_max = X[:, 1].max()
        x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
    
        P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
        P = P.reshape(x2.shape)
    
        if plot_decision_regions:
            subplot.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
    
        subplot.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
        subplot.set_xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
        subplot.set_ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
    
        if (X_test is not None):
            subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
            train_score = clf.score(X, y)
            test_score  = clf.score(X_test, y_test)
            title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
    
        subplot.set_title(title)
    
        if (target_names is not None):
            legend_handles = []
            for i in range(0, len(target_names)):
                patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
                legend_handles.append(patch)
            subplot.legend(loc=0, handles=legend_handles)
    
    
    def plot_class_regions_for_classifier(clf, X, y, X_test=None, y_test=None, title=None, target_names = None, plot_decision_regions = True):
    
        numClasses = numpy.amax(y) + 1
        color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
        color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
        cmap_light = ListedColormap(color_list_light[0:numClasses])
        cmap_bold  = ListedColormap(color_list_bold[0:numClasses])
    
        h = 0.03
        k = 0.5
        x_plot_adjust = 0.1
        y_plot_adjust = 0.1
        plot_symbol_size = 50
    
        x_min = X[:, 0].min()
        x_max = X[:, 0].max()
        y_min = X[:, 1].min()
        y_max = X[:, 1].max()
        x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
    
        P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
        P = P.reshape(x2.shape)
        plt.figure()
        if plot_decision_regions:
            plt.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
    
        plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
        plt.xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
        plt.ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
    
        if (X_test is not None):
            plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
            train_score = clf.score(X, y)
            test_score  = clf.score(X_test, y_test)
            title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
    
        if (target_names is not None):
            legend_handles = []
            for i in range(0, len(target_names)):
                patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
                legend_handles.append(patch)
            plt.legend(loc=0, handles=legend_handles)
    
        if (title is not None):
            plt.title(title)
        plt.show()
    
    def plot_fruit_knn(X, y, n_neighbors, weights):
        X_mat = X[['height', 'width']].to_numpy()
        y_mat = y.to_numpy()
    
        # Create color maps
        cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
        cmap_bold  = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])
    
        clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
        clf.fit(X_mat, y_mat)
    
        # Plot the decision boundary by assigning a color in the color map
        # to each mesh point.
    
        mesh_step_size = .01  # step size in the mesh
        plot_symbol_size = 50
    
        x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
        y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
        xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
                             numpy.arange(y_min, y_max, mesh_step_size))
        Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
    
        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        plt.figure()
        plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
    
        # Plot training points
        plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
        plt.xlim(xx.min(), xx.max())
        plt.ylim(yy.min(), yy.max())
    
        patch0 = mpatches.Patch(color='#FF0000', label='apple')
        patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
        patch2 = mpatches.Patch(color='#0000FF', label='orange')
        patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
        plt.legend(handles=[patch0, patch1, patch2, patch3])
    
    
        plt.xlabel('height (cm)')
        plt.ylabel('width (cm)')
    
        plt.show()
    
    def plot_two_class_knn(X, y, n_neighbors, weights, X_test, y_test):
        X_mat = X
        y_mat = y
    
        # Create color maps
        cmap_light = ListedColormap(['#FFFFAA', '#AAFFAA', '#AAAAFF','#EFEFEF'])
        cmap_bold  = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])
    
        clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
        clf.fit(X_mat, y_mat)
    
        # Plot the decision boundary by assigning a color in the color map
        # to each mesh point.
    
        mesh_step_size = .01  # step size in the mesh
        plot_symbol_size = 50
    
        x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
        y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
        xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
                             numpy.arange(y_min, y_max, mesh_step_size))
        Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
    
        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        plt.figure()
        plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
    
        # Plot training points
        plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
        plt.xlim(xx.min(), xx.max())
        plt.ylim(yy.min(), yy.max())
    
        title = "Neighbors = {}".format(n_neighbors)
        if (X_test is not None):
            train_score = clf.score(X_mat, y_mat)
            test_score  = clf.score(X_test, y_test)
            title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
    
        patch0 = mpatches.Patch(color='#FFFF00', label='class 0')
        patch1 = mpatches.Patch(color='#000000', label='class 1')
        plt.legend(handles=[patch0, patch1])
    
        plt.xlabel('Feature 0')
        plt.ylabel('Feature 1')
        plt.title(title)
    
        plt.show()
    

    adspy_shared_实用程序。py公司 不是一个模块,它只是一个文件,用于coursera的“Python应用机器学习”课程。 我希望它能解决这个问题。