我知道在我的数据响应字节列中没有NaN值,因为当我运行时:
data[data.response_bytes.isna()].count()
结果是0。
当我运行2分钟Bucket Mean然后抬头时,我得到Nan:
print(data.reset_index().set_index('time').resample('2min').mean().head())
index identity user http_code response_bytes unknown
time
2018-01-31 09:26:00 0.5 NaN NaN 200.0 264.0 NaN
2018-01-31 09:28:00 NaN NaN NaN NaN NaN NaN
2018-01-31 09:30:00 NaN NaN NaN NaN NaN NaN
2018-01-31 09:32:00 NaN NaN NaN NaN NaN NaN
2018-01-31 09:34:00 NaN NaN NaN NaN NaN NaN
为什么响应字节时间bucketing意味着有nan值?
我想做个实验,学习一下大熊猫的时间节律。所以我使用了日志文件:
http://www.cs.tufts.edu/comp/116/access.log
作为输入数据,然后将其加载到pandas数据帧中,然后应用时间桶2分钟(这是我有生以来第一次)并运行mean(),我不希望在
响应字节
列,因为所有值都不是NaN。
这是我的完整代码:
import urllib.request
import pandas as pd
import re
from datetime import datetime
import pytz
pd.set_option('max_columns',10)
def parse_str(x):
"""
Returns the string delimited by two characters.
Example:
`>>> parse_str('[my string]')`
`'my string'`
"""
return x[1:-1]
def parse_datetime(x):
'''
Parses datetime with timezone formatted as:
`[day/month/year:hour:minute:second zone]`
Example:
`>>> parse_datetime('13/Nov/2015:11:45:42 +0000')`
`datetime.datetime(2015, 11, 3, 11, 45, 4, tzinfo=<UTC>)`
Due to problems parsing the timezone (`%z`) with `datetime.strptime`, the
timezone will be obtained using the `pytz` library.
'''
dt = datetime.strptime(x[1:-7], '%d/%b/%Y:%H:%M:%S')
dt_tz = int(x[-6:-3])*60+int(x[-3:-1])
return dt.replace(tzinfo=pytz.FixedOffset(dt_tz))
# data = pd.read_csv(StringIO(accesslog))
url = "http://www.cs.tufts.edu/comp/116/access.log"
accesslog = urllib.request.urlopen(url).read().decode('utf-8')
fields = ['host', 'identity', 'user', 'time_part1', 'time_part2', 'cmd_path_proto',
'http_code', 'response_bytes', 'referer', 'user_agent', 'unknown']
data = pd.read_csv(url, sep=' ', header=None, names=fields, na_values=['-'])
# Panda's parser mistakenly splits the date into two columns, so we must concatenate them
time = data.time_part1 + data.time_part2
time_trimmed = time.map(lambda s: re.split('[-+]', s.strip('[]'))[0]) # Drop the timezone for simplicity
data['time'] = pd.to_datetime(time_trimmed, format='%d/%b/%Y:%H:%M:%S')
data.head()
print(data.reset_index().set_index('time').resample('2min').mean().head())
我希望响应字节平均值列的时间间隔不是nan。