一种解决方法是合并间隙周围的点。下面是一种方法,通过跟踪对应点的索引:
import matplotlib.pylab as plt
from scipy.spatial import Delaunay
import numpy as np
NR = 4
NTheta = 16
Rin = 1
Rout = 3
alphaFactor = 33/64 # -- set to .5 to close the gap
alpha = np.pi/alphaFactor # opening angle of wedge
u = np.linspace(np.pi/2, np.pi/2 + alpha, NTheta)
v = np.linspace(Rin, Rout, NR)
u_grid, v_grid = np.meshgrid(u, v)
u = u_grid.flatten()
v = v_grid.flatten()
# Get the indexes of the points on the first and last columns:
idx_grid_first = (np.arange(u_grid.shape[0]),
np.zeros(u_grid.shape[0], dtype=int))
idx_grid_last = (np.arange(u_grid.shape[0]),
(u_grid.shape[1]-1)*np.ones(u_grid.shape[0], dtype=int))
# Convert these 2D indexes to 1D indexes, on the flatten array:
idx_flat_first = np.ravel_multi_index(idx_grid_first, u_grid.shape)
idx_flat_last = np.ravel_multi_index(idx_grid_last, u_grid.shape)
# Evaluate the parameterization at the flattened u and v
x = v * np.cos(u)
y = v * np.sin(u)
# Define 2D points, as input data for the Delaunay triangulation of U
points2D = np.vstack([u, v]).T
triLattice = Delaunay(points2D) # triangulate the rectangle U
triSimplices = triLattice.simplices
# Replace the 'last' index by the corresponding 'first':
triSimplices_merged = triSimplices.copy()
for i_first, i_last in zip(idx_flat_first, idx_flat_last):
triSimplices_merged[triSimplices == i_last] = i_first
# Graph
plt.figure(figsize=(7, 7))
plt.triplot(x, y, triSimplices, linewidth=0.5)
plt.triplot(x, y, triSimplices_merged, linewidth=0.5, color='k')
plt.axis('equal');
plt.plot(x[idx_flat_first], y[idx_flat_first], 'or', label='first')
plt.plot(x[idx_flat_last], y[idx_flat_last], 'ob', label='last')
plt.legend();
它给出:
alphaFactor
以便间隙大小合适。