各种各样的
bucketing
用例使用
Dataset API
解释得很好
here
.
bucket_by_sequence_length()
例子:
def elements_gen():
text = [[1, 2, 3], [3, 4, 5, 6, 7], [1, 2], [8, 9, 0, 2]]
label = [1, 2, 1, 2]
for x, y in zip(text, label):
yield (x, y)
def element_length_fn(x, y):
return tf.shape(x)[0]
dataset = tf.data.Dataset.from_generator(generator=elements_gen,
output_shapes=([None],[]),
output_types=(tf.int32, tf.int32))
dataset = dataset.apply(tf.contrib.data.bucket_by_sequence_length(element_length_func=element_length_fn,
bucket_batch_sizes=[2, 2, 2],
bucket_boundaries=[0, 8]))
batch = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(2):
print('Get_next:')
print(sess.run(batch))
输出:
Get_next:
(array([[1, 2, 3, 0, 0],
[3, 4, 5, 6, 7]], dtype=int32), array([1, 2], dtype=int32))
Get_next:
(array([[1, 2, 0, 0],
[8, 9, 0, 2]], dtype=int32), array([1, 2], dtype=int32))