我正在从一个文件中执行8位数据的分散读取(取消64通道波形文件的交错读取)。然后我将它们组合成一个字节流。我面临的问题是,我要重新构建要写出的数据。
基本上,我读取16个字节,然后将它们构建成一个单独的m128i变量,然后使用m m-stream-ps将值写回内存。不过,我有一些奇怪的性能结果。
在我的第一个方案中,我使用mm_set_epi8内在设置我的uum128i如下:
const __m128i packedSamples = _mm_set_epi8( sample15, sample14, sample13, sample12, sample11, sample10, sample9, sample8,
sample7, sample6, sample5, sample4, sample3, sample2, sample1, sample0 );
基本上,我将全部留给编译器来决定如何优化它以获得最佳性能。这会产生最差的性能。我的测试用了大约0.195秒。
第二,我尝试使用4个“设置”EPI32指令合并,然后将它们打包:
const __m128i samples0 = _mm_set_epi32( sample3, sample2, sample1, sample0 );
const __m128i samples1 = _mm_set_epi32( sample7, sample6, sample5, sample4 );
const __m128i samples2 = _mm_set_epi32( sample11, sample10, sample9, sample8 );
const __m128i samples3 = _mm_set_epi32( sample15, sample14, sample13, sample12 );
const __m128i packedSamples0 = _mm_packs_epi32( samples0, samples1 );
const __m128i packedSamples1 = _mm_packs_epi32( samples2, samples3 );
const __m128i packedSamples = _mm_packus_epi16( packedSamples0, packedSamples1 );
这确实在一定程度上提高了性能。我的测试现在运行在~0.15秒。似乎有悖直觉的是,这样做会提高性能,因为我认为这正是集epi8所做的…
我的最后一个尝试是使用一些我用传统方式制作四个ccs的代码(使用移位和ORS),然后用一个单独的EPI32将它们放入一个umm M128i中。
const GCui32 samples0 = MakeFourCC( sample0, sample1, sample2, sample3 );
const GCui32 samples1 = MakeFourCC( sample4, sample5, sample6, sample7 );
const GCui32 samples2 = MakeFourCC( sample8, sample9, sample10, sample11 );
const GCui32 samples3 = MakeFourCC( sample12, sample13, sample14, sample15 );
const __m128i packedSamples = _mm_set_epi32( samples3, samples2, samples1, samples0 );
这将提供更好的性能。用~0.135秒来运行我的测试。我真的开始困惑了。
所以我尝试了一个简单的读字节写字节系统,这比上一个方法都要快。
那怎么回事?这一切对我来说似乎都是违反直觉的。
我已经考虑过延迟发生在mm_u流上的想法,因为我提供数据的速度太快,但是无论做什么,我都会得到完全相同的结果。前2个方法是否意味着16个负载不能通过循环分布以隐藏延迟?如果是,为什么是这样?当然,一个内在的允许编译器根据自己的喜好进行优化。我以为这就是重点…当然,执行16次读和16次写的速度要比16次读和1次写慢得多。毕竟读写都是慢一点的!
任何有任何想法的人都会非常感激的!:d
编辑:在下面的注释中,我停止将字节预加载为常量,并将其更改为:
const __m128i samples0 = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
pSamples += channelStep4;
const __m128i samples1 = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
pSamples += channelStep4;
const __m128i samples2 = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
pSamples += channelStep4;
const __m128i samples3 = _mm_set_epi32( *(pSamples + channelStep3), *(pSamples + channelStep2), *(pSamples + channelStep1), *(pSamples + channelStep0) );
pSamples += channelStep4;
const __m128i packedSamples0 = _mm_packs_epi32( samples0, samples1 );
const __m128i packedSamples1 = _mm_packs_epi32( samples2, samples3 );
const __m128i packedSamples = _mm_packus_epi16( packedSamples0, packedSamples1 );
这将性能提高到约0.143秒。它不如直接的C实现好…
再次编辑:到目前为止,我获得的最佳性能是
// Load the samples.
const GCui8 sample0 = *(pSamples + channelStep0);
const GCui8 sample1 = *(pSamples + channelStep1);
const GCui8 sample2 = *(pSamples + channelStep2);
const GCui8 sample3 = *(pSamples + channelStep3);
const GCui32 samples0 = Build32( sample0, sample1, sample2, sample3 );
pSamples += channelStep4;
const GCui8 sample4 = *(pSamples + channelStep0);
const GCui8 sample5 = *(pSamples + channelStep1);
const GCui8 sample6 = *(pSamples + channelStep2);
const GCui8 sample7 = *(pSamples + channelStep3);
const GCui32 samples1 = Build32( sample4, sample5, sample6, sample7 );
pSamples += channelStep4;
// Load the samples.
const GCui8 sample8 = *(pSamples + channelStep0);
const GCui8 sample9 = *(pSamples + channelStep1);
const GCui8 sample10 = *(pSamples + channelStep2);
const GCui8 sample11 = *(pSamples + channelStep3);
const GCui32 samples2 = Build32( sample8, sample9, sample10, sample11 );
pSamples += channelStep4;
const GCui8 sample12 = *(pSamples + channelStep0);
const GCui8 sample13 = *(pSamples + channelStep1);
const GCui8 sample14 = *(pSamples + channelStep2);
const GCui8 sample15 = *(pSamples + channelStep3);
const GCui32 samples3 = Build32( sample12, sample13, sample14, sample15 );
pSamples += channelStep4;
const __m128i packedSamples = _mm_set_epi32( samples3, samples2, samples1, samples0 );
_mm_stream_ps( pWrite + 0, *(__m128*)&packedSamples );
这使我能在~0.095秒内完成处理,这是相当好的。不过,我似乎无法接近SSE……我还是很困惑,但是……嗬哼。