代码之家  ›  专栏  ›  技术社区  ›  sundowatch

如何在Tensorflow中检测目标在图像中的位置

  •  0
  • sundowatch  · 技术社区  · 6 年前

    我是Tensorflow的新手,正在寻找样本对象检测代码。其中之一就是 that

    谢谢

    2 回复  |  直到 6 年前
        1
  •  1
  •   rootkitchao    6 年前
    # Run the model
        out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
                        sess.graph.get_tensor_by_name('detection_scores:0'),
                        sess.graph.get_tensor_by_name('detection_boxes:0'),
                        sess.graph.get_tensor_by_name('detection_classes:0')],
                       feed_dict={'image_tensor:0': inp.reshape(1, inp.shape[0], inp.shape[1], 3)})
    
         # Visualize detected bounding boxes.
        num_detections = int(out[0][0])
        for i in range(num_detections):
            classId = int(out[3][0][i])
            score = float(out[1][0][i])
            bbox = [float(v) for v in out[2][0][i]]
    
        2
  •  1
  •   sundowatch    6 年前

    Get the bounding box coordinates in the TensorFlow object detection API tutorial

    在此之后:

    out = vis_util.visualize_boxes_and_labels_on_image_array(
    image,
    np.squeeze(boxes),
    np.squeeze(classes).astype(np.int32),
    np.squeeze(scores),
    category_index,
    use_normalized_coordinates=True,
    line_thickness=1,
    min_score_thresh=0.80)
    

    职位是:

    im_height, im_width = image.shape[:2]
    
    position = boxes[0][0]
    
    (xmin, xmax, ymin, ymax) = (position[1]*im_width, position[3]*im_width, position[0]*im_height, position[2]*im_height)
    
    roi = image2[int(ymin):int(ymax), int(xmin):int(xmax)]
    

    rootkitchao