我在JavaScript中实现了一个ElGamal方案(代码很糟糕,只是想快速测试它),基于
this
var forge = require('node-forge');
var bigInt = require("big-integer");
var bits = 160;
forge.prime.generateProbablePrime(bits, function(err, num) {
// Create prime factor and convert to bigInt
var factor = bigInt(num.toString(10));
// Find a larger prime of which factor is prime factor
// Determine a large even number as a co-factor
var coFactor = bigInt.randBetween("2e260", "3e260"); // should be bitLength(prime) - bitLength(factor)
var prime = 4;
while(!coFactor.isEven() || !prime.isPrime()) {
coFactor = bigInt.randBetween("2e260", "3e260"); // should be bitLength(prime) - bitLength(factor)
prime = coFactor.multiply(factor);
prime = prime.add(1);
}
// Get a generator g for the multiplicative group mod factor
var j = prime.minus(1).divide(factor);
var h = bigInt.randBetween(2, prime.minus(1));
var g = h.modPow(j, factor);
// Alice's keys
// Secret key
var a = bigInt.randBetween(2, factor.minus(2));
// Public key
var A = g.modPow(a, prime);
// Bob's keys
// Secret key
var b = bigInt.randBetween(2, factor.minus(2));
// Public key
var B = g.modPow(b, prime);
// Shared secret
// Calculated by Alice
var Sa = B.modPow(a, prime);
// Calculated by Bob
var Sb = A.modPow(b, prime);
// Check
// Encryption by Alice
var k = bigInt.randBetween(1, factor.minus(1));
var c1 = g.modPow(k, prime);
// Using Bob's public key
var m = bigInt(2234266) // our message
var c2 = m.multiply(B.modPow(k, prime));
// Decryption by Bob
var decrypt = c1.modPow((prime.minus(b).minus(bigInt(1))), prime).multiply(c2).mod(prime);
console.log(decrypt); // should be 2234266
这似乎是可行的,最后的解密步骤返回原始数字。我现在想把它转换成一个单向代理重新加密方案,基于以下想法,取自
this
论文(第6页,左栏)。
所以你不必阅读这篇文章,背后的逻辑是我们可以分割私钥
x
分为两部分
x1
x2
x = x1 + x2
.代理将获得
x1
,将结果传递给最终用户,最终用户将使用
x1
.
现在,我尝试通过在代码中添加
// Proxy re-encryption test
// x is secret key
var x = bigInt.randBetween(1, factor.minus(1));
var x1 = bigInt.randBetween(1, x);
var x2 = x.minus(x1);
// y is public key
var y = g.modPow(x, prime);
var r = bigInt.randBetween(1, factor.minus(1));
var c3 = g.modPow(r, prime);
// mg^xr
var c4 = bigInt(2234266).multiply(y.modPow(r, prime));
var _decryptP = c4.divide(g.modPow(x1.multiply(r), prime));
var _decryptF = _decryptP.divide(g.modPow(x2.multiply(r), prime));
});
遵循与上述等式相同的逻辑。然而
_decryptF
不返回
2234266