这是因为你应用
filter
在
batch
.
lambda
表情,
x
是一批有形状的
(None,)
(通过
drop_reminder=True
到
成形
(20,)
批
.
在
批
map
相反。但是,正如您所看到的,这有一个副作用,使成批的变量变大:您在输入中得到一批20个,然后删除与特定条件不匹配的元素(trestbps<135),而不是从每个批中删除相同数量的元素。而且这个解决方案的性能很差。。。
import timeit
import pandas as pd
import tensorflow.compat.v2 as tf
import tensorflow.compat.v1 as tfv1
tfv1.enable_v2_behavior()
def s1(ds):
dataset = ds
dataset = dataset.filter(lambda x, label: x['trestbps']<135)
dataset = dataset.batch(20)
return dataset
def s2(ds):
dataset = ds
dataset = dataset.batch(20)
dataset = dataset.map(lambda x, label: (tf.nest.map_structure(lambda y: y[x['trestbps'] < 135], x), label[x['trestbps'] < 135]))
return dataset
def base_ds():
csv_file = tf.keras.utils.get_file('heart.csv', 'https://storage.googleapis.com/applied-dl/heart.csv')
df = pd.read_csv(csv_file)
target = df.pop('target')
df['thal'] = pd.Categorical(df['thal'])
df['thal'] = df.thal.cat.codes
return tf.data.Dataset.from_tensor_slices((df.to_dict('list'), target.values))
def main():
ds = base_ds()
ds1 = s1(ds)
ds2 = s2(ds)
tf.print("DS_S1:", [tf.nest.map_structure(lambda x: x.shape, x) for x in ds1])
tf.print("DS_S2:", [tf.nest.map_structure(lambda x: x.shape, x) for x in ds2])
tf.print("Are equals?", [x for x in ds1] == [x for x in ds2])
tf.print("Contains same elements?", [x for x in ds1.unbatch()] == [x for x in ds2.unbatch()])
tf.print("Filter and batch:", timeit.timeit(lambda: s1(ds), number=100))
tf.print("Batch and map:", timeit.timeit(lambda: s2(ds), number=100))
if __name__ == '__main__':
main()
结果:
# Tensor shapes
[...]
Are equals? False
Contains same elements? True
Filter and batch: 0.5571189750007761
Batch and map: 15.582061060000342
善良