我的培训和测试数据都在CSV中,如下所示:
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
我知道如何做基本算法。下面是我为它创建的C#:
namespace Project_3_Prototype
{
public class FourD
{
public double f1, f2, f3, f4;
public string name;
public static double Distance(FourD a, FourD b)
{
double squared = Math.Pow(a.f1 - b.f1, 2) + Math.Pow(a.f2 - b.f2, 2) + Math.Pow(a.f3 - b.f3, 2) + Math.Pow(a.f4 - b.f4, 2);
return Math.Sqrt(squared);
}
}
class Program
{
static void Main(string[] args)
{
List<FourD> distances = new List<FourD>();
using (var parser = new TextFieldParser("iris-training-data.csv"))
{
parser.SetDelimiters(",");
while (!parser.EndOfData)
{
string[] fields = parser.ReadFields();
var curr = new FourD
{
f1 = double.Parse(fields[0]),
f2 = double.Parse(fields[1]),
f3 = double.Parse(fields[2]),
f4 = double.Parse(fields[3]),
name = fields[4]
};
distances.Add(curr);
}
}
double correct = 0, total = 0;
using (var parser = new TextFieldParser("iris-testing-data.csv"))
{
parser.SetDelimiters(",");
int i = 1;
while (!parser.EndOfData)
{
total++;
string[] fields = parser.ReadFields();
var curr = new FourD
{
f1 = double.Parse(fields[0]),
f2 = double.Parse(fields[1]),
f3 = double.Parse(fields[2]),
f4 = double.Parse(fields[3]),
name = fields[4]
};
FourD min = distances[0];
foreach (FourD comp in distances)
{
if (FourD.Distance(comp, curr) < FourD.Distance(min, curr))
{
min = comp;
}
}
if (min.name == curr.name)
{
correct++;
}
Console.WriteLine(string.Format("{0},{1},{2}", i, curr.name, min.name));
i++;
}
}
Console.WriteLine("Accuracy: " + correct / total);
Console.ReadLine();
}
}
}
1,Iris-setosa,Iris-setosa
2,Iris-setosa,Iris-setosa
3,Iris-setosa,Iris-setosa
4,Iris-setosa,Iris-setosa
5,Iris-setosa,Iris-setosa
6,Iris-setosa,Iris-setosa
7,Iris-setosa,Iris-setosa
8,Iris-setosa,Iris-setosa
9,Iris-setosa,Iris-setosa
10,Iris-setosa,Iris-setosa
11,Iris-setosa,Iris-setosa
12,Iris-setosa,Iris-setosa
...
Accuracy: 0.946666666666667
我正试图在努比做同样的事情。但是,任务不允许我使用
for
循环,仅矢量化函数。
所以,基本上我想做的是:对于测试数据中的每一行,获取训练数据中最接近它的行的索引(即具有最小欧氏距离)。
以下是我在Python中尝试的内容:
import numpy as np
def main():
data = [x.split(',') for x in open("iris-training-data.csv")]
labels = np.array([x[-1].rstrip() for x in data])
floats = np.array([x[0:3] for x in data]).astype(float)
classifyTrainingExamples(labels, floats)
def classifyTrainingExamples(labels, floats):
testingData = [x.split(',') for x in open("iris-testing-data.csv")]
testingLabels = np.array([x[-1].rstrip() for x in testingData])
testingFloats = np.array([x[0:3] for x in testingData]).astype(float)
res = np.apply_along_axis(lambda x: closest(floats, x), 1, testingFloats)
correct = 0
for number, index in enumerate(res):
if labels[index] == testingLabels[number]:
correct += 1
print("{},{},{}".format(number + 1, testingLabels[number], labels[index]))
number += 1
print(correct / len(list(res)))
def closest(otherArray, item):
res = np.apply_along_axis(lambda x: distance(x, item), 1, otherArray)
i = np.argmin(res)
return i
def distance(a, b):
lst = (a - b) ** 2
result = np.sqrt(lst.sum())
return result
main()
不幸的是,输出看起来像
1,Iris-setosa,Iris-setosa
2,Iris-setosa,Iris-setosa
3,Iris-setosa,Iris-setosa
4,Iris-setosa,Iris-setosa
....
74,Iris-setosa,Iris-setosa
75,Iris-setosa,Iris-setosa
0.93333333
每一行都只有一句话
Iris-setosa
对于标签,准确度为0.9333333。
每一个
if
语句(但正确率仍然显示为0.93333)。
所以基本上:
-
这表明每一个结果都是“正确的”(当它显然不是的时候)。
-
刚毛鸢尾
-
我的百分比显示为93%。正确的值实际上大约是94%,但我希望它显示100%,因为每个结果都应该是“正确的”
有人能帮我看看我缺少什么吗?
在有人问之前,为了记录,是的,我试着用调试器一步一步地完成:)同样为了记录,是的,这是家庭作业。