我不确定发生了什么。您使用的是什么版本的CoreNLP?在命令行工作时,我无法再现这个问题。见下文。所以,我的前两个问题是:你在使用最新的CoreNLP吗?(如果没有,请尝试升级。)这在命令行中适用吗?(在这种情况下,只有IntelliJ中的使用存在问题-不确定那里会发生什么,但与反射和类加载器的工作方式有关?)
==> Pouring jython-2.7.1.sierra.bottle.tar.gz
ðº /usr/local/Cellar/jython/2.7.1: 3,797 files, 147.4MB
$ export JYTHONPATH="/Users/manning/Software/stanford-corenlp-full-2017-06-09/*:"
$ jython
Jython 2.7.1 (default:0df7adb1b397, Jun 30 2017, 19:02:43)
[Java HotSpot(TM) 64-Bit Server VM (Oracle Corporation)] on java1.8.0_65
Type "help", "copyright", "credits" or "license" for more information.
>>> from edu.stanford.nlp.simple import *
>>> s = Sentence("This is a test.")
>>> ss = s.nerTags()
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/manning/git/javanlp/projects/core/lib/slf4j-simple.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/manning/Software/stanford-corenlp-full-2017-06-09/slf4j-simple.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.SimpleLoggerFactory]
[main] INFO edu.stanford.nlp.tagger.maxent.MaxentTagger - Loading POS tagger from edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger ... done [0.7 sec].
[main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Loading classifier from edu/stanford/nlp/models/ner/english.all.3class.distsim.crf.ser.gz ... done [0.9 sec].
[main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Loading classifier from edu/stanford/nlp/models/ner/english.muc.7class.distsim.crf.ser.gz ... done [0.6 sec].
[main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Loading classifier from edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz ... done [2.4 sec].
[main] INFO edu.stanford.nlp.time.JollyDayHolidays - Initializing JollyDayHoliday for SUTime from classpath edu/stanford/nlp/models/sutime/jollyday/Holidays_sutime.xml as sutime.binder.1.
>>> print(s)
This is a test.
>>> print(ss)
[O, O, O, O, O]
>>> s2 = Sentence("Chris joined Stanford in 1999");
>>> ss2 = s2.nerTags()
>>> print(ss2)
[PERSON, O, ORGANIZATION, O, DATE]
>>>