代码之家  ›  专栏  ›  技术社区  ›  aviss

熊猫剪影评分的正确数据格式

  •  0
  • aviss  · 技术社区  · 6 年前

    TypeError: silhouette_score() takes 1 positional argument but 2 were given .

    我的数据(X)是一个有20个特性(都是非空float64)的pandas数据帧,索引是唯一的ID字符串(这会有问题吗?)。

        f1   f2   f3    …   f20
    ID                  
    AA2 0.33 0   0.31   …   0.16
    BS4 0    0   0      …   0.41
    VK9 0    0   0      …   0.48
    

    我使用data.values将其转换为矩阵(请参见下面的代码)。谢谢你的帮助!

    X = data.values
    for n_clusters in range_n_clusters:
        # Create a subplot with 1 row and 2 columns
        fig, (ax1, ax2) = plt.subplots(1, 2)
        fig.set_size_inches(18, 7)
    # The 1st subplot is the silhouette plot
    # The silhouette coefficient can range from -1, 1 but in this example all
    # lie within [-0.1, 1]
    ax1.set_xlim([-0.1, 1])
    # The (n_clusters+1)*10 is for inserting blank space between silhouette
    # plots of individual clusters, to demarcate them clearly.
    ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
    
    # Initialize the clusterer with n_clusters value and a random generator
    # seed of 10 for reproducibility.
    clusterer = KMeans(n_clusters=n_clusters, random_state=10)
    cluster_labels = clusterer.fit_predict(X)
    
    # The silhouette_score gives the average value for all the samples.
    # This gives a perspective into the density and separation of the formed
    # clusters
    silhouette_avg = silhouette_score(X, cluster_labels)
    print("For n_clusters =", n_clusters,
          "The average silhouette_score is :", silhouette_avg)
    
    # Compute the silhouette scores for each sample
    sample_silhouette_values = silhouette_samples(X, cluster_labels)
    
    y_lower = 10
    for i in range(n_clusters):
        # Aggregate the silhouette scores for samples belonging to
        # cluster i, and sort them
        ith_cluster_silhouette_values = \
            sample_silhouette_values[cluster_labels == i]
    
        ith_cluster_silhouette_values.sort()
    
        size_cluster_i = ith_cluster_silhouette_values.shape[0]
        y_upper = y_lower + size_cluster_i
    
        color = cm.nipy_spectral(float(i) / n_clusters)
        ax1.fill_betweenx(np.arange(y_lower, y_upper),
                          0, ith_cluster_silhouette_values,
                          facecolor=color, edgecolor=color, alpha=0.7)
    
        # Label the silhouette plots with their cluster numbers at the middle
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
    
        # Compute the new y_lower for next plot
        y_lower = y_upper + 10  # 10 for the 0 samples
    
    ax1.set_title("The silhouette plot for the various clusters.")
    ax1.set_xlabel("The silhouette coefficient values")
    ax1.set_ylabel("Cluster label")
    
    # The vertical line for average silhouette score of all the values
    ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
    
    ax1.set_yticks([])  # Clear the yaxis labels / ticks
    ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
    
    # 2nd Plot showing the actual clusters formed
    colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
    ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
                c=colors, edgecolor='k')
    
    # Labeling the clusters
    centers = clusterer.cluster_centers_
    # Draw white circles at cluster centers
    ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
                c="white", alpha=1, s=200, edgecolor='k')
    
    for i, c in enumerate(centers):
        ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
                    s=50, edgecolor='k')
    
    ax2.set_title("The visualization of the clustered data.")
    ax2.set_xlabel("Feature space for the 1st feature")
    ax2.set_ylabel("Feature space for the 2nd feature")
    
    plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
                  "with n_clusters = %d" % n_clusters),
                 fontsize=14, fontweight='bold')
    
    plt.show()
    

    错误:

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-129-1d93fb88b278> in <module>()
    ----> 1 sil_(var_th.values,[2, 3, 4, 5, 6])
    
    <ipython-input-127-0e092cfcc4be> in sil_(X, range_n_clusters)
         21         # This gives a perspective into the density and separation of the formed
         22         # clusters
    ---> 23         silhouette_avg = silhouette_score(X, cluster_labels)
         24         print("For n_clusters =", n_clusters,
         25               "The average silhouette_score is :", silhouette_avg)
    
    TypeError: silhouette_score() takes 1 positional argument but 2 were given
    
    1 回复  |  直到 6 年前
        1
  •  0
  •   aviss    6 年前

    data.reset_index(inplace=True) 然后切片数据 X = data[data.columns[1:]].values