我在这里创建了一个示例数据框。
df = pd.DataFrame( np.random.randn(10,2), columns=list('AB'))
A B
0 0.459759 0.152645
1 0.183613 0.756527
2 -1.836027 0.032433
3 0.264336 0.170171
4 -0.276347 0.208389
5 0.677709 0.725274
6 -0.547858 0.376683
7 -0.994759 -0.750373
8 0.556593 1.282167
9 -1.444533 0.589768
df['A_rank']= pd.qcut(df['A'],[0,0.25,0.5,0.75,1],duplicates="drop")
A B A_rank
0 0.459759 0.152645 (0.411, 0.678]
1 0.183613 0.756527 (-0.0464, 0.411]
2 -1.836027 0.032433 (-1.837, -0.883]
3 0.264336 0.170171 (-0.0464, 0.411]
4 -0.276347 0.208389 (-0.883, -0.0464]
5 0.677709 0.725274 (0.411, 0.678]
6 -0.547858 0.376683 (-0.883, -0.0464]
7 -0.994759 -0.750373 (-1.837, -0.883]
8 0.556593 1.282167 (0.411, 0.678]
9 -1.444533 0.589768 (-1.837, -0.883]
我想从上面创建一个新的数据帧,如下所示,它基本上是基于a\U排名的子集。
A B A_rank A_rank_open_low A_rank_closed_hi
0 0.459759 0.152645 (0.411, 0.678] 0.411 0.678
5 0.677709 0.725274 (0.411, 0.678] 0.411 0.678
8 0.556593 1.282167 (0.411, 0.678] 0.411 0.678
我不想使用qcut使用整数标签,但希望直接使用qcut输出本身的标签,但我无法与作为范围的类别(a\u rank)进行比较。由于我不了解此数据类型,以下尝试失败。
df2 = df[df['A_rank']=="(0.411, 0.678]"]
无错误,但输出为:
Empty DataFrame
Columns: [A, B, A_rank]
Index: []
df2 = df[df['A_rank']== pd.Categorical("(0.411, 0.678]")]
TypeError:只有“类别”相同时,才能比较类别。类别长度不同
df2 = df[str(df['A_rank'])=="(0.411, 0.678]"]
也进行了追踪
我在文档中搜索了分类索引和类别,但没有找到多少。请帮帮我。